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This Is a study of the transition from lamlnar steady motion to turbulent, 
In systems described by equations of the hydrodynamic type. jie describe the 
method of finding periodic steady motions of small amplitude. The latter la 
expressed in explicit form In terms of the parameters of the system near the 
borderline separating the regions of smooth and abrupt transition. 

1. It 4s well known that In the transition from the lamlnar state to the 

turbulent in a number of systems, a motion is set up wlth a deflnlte fre- 

quency and wave vector when slight supercriticalness takes place (as an exam- 

ple we may take convection between parallel plates Cl], the flow of a liquid 

between rotating cylinders [2 to 43, the strata in a gaseous discharge [5 

and 63. helical instability In a gaseous discharge and semi-conductors [7 to 

101; a motion, periodic with respect to time, arises also In the flow past 

rigid bodies [ll]). 'The frequency and the wave number, and also the form of 

the oscillation, can be approximately determined from linear theory; to find 

the amplitude Q , however, it is necessary to take Into account nonlinear 
effects. 

It is shown below that the equation for the square of the modulus of the 

amplitude 4 = QQ* of a steady periodic motion has the form (for small a) 

dq - = Zq(y0 + aq + bqZ +...) = 37 
dt 

(1.1) 

The phase of the amplitude Q (and consequently also the phase of the 

steady solution) is arbitrary. The coefficients yO, 0, ti, . . . are functions 

of the parameters of the system A (the temperature, the geometric dimensions, 

the external magnetic field and so on); y,, is the growth rate given by lin- 

ear theory, whilst the second and third terms In y are related to the lnclu- 

slon of nonlinear effects. 

The critical parameters A+ are defined by Equation yc(h,) = 0; the equl- 
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llbrlum state P = 

Let tne system 

0 Is unstable when y,(A) z 0 . 

be such that a(AJ# 0 for any values of A,. If a(A,)<o, 

then with an increase of supercrltlcalness h - A - A, the amplitude of t.he 

steady motion continuously increases from,zero (the 'smooth' behavior); In 

this case from Equation y = 0 we obtain Q=: - (avldy,/ dh), A. If 

a(A,) > 0 , then as A passes through the critical value A, the amplitude 

changes from zero up to a certain finite value by a jump [4, 6, 9 and 101 

(the "abrupt" behavior); In this case the amplitude, In general, is not 

small for small supercrltlcalness. whilst the motion Itself can have the 

irregular character of developed turbulent motion. 

2. Let us consider systems for which, for certain values of the para- 

meters A+ , Equations yo= a = 0 are satisfied. In such systems [2 to lo], 

depending on the values of A ,, , both smooth [3, 6 and 81 and abrupt transl- 

tlons [4, 6, 9 and 101 of steady motion are possible. 

Suppose that when A = A, the relations yo= a = 0 and b # 0 are satis- 

fled. Then for sufficiently small A the quantities y. and a are small, 

whilst b # 0 . The ratio of the quantities y. and a Is arbitrary, In so 

far as It depends upon the direction of the vector A . Accordingly, in 

finding solutions 4 of Equation y = 0 we must regard the quantltles y. 

and a as Independent small parameters. It is easy to find the solutlon'q 

In the particular cases a = 0 or yo= 0 . In the first case q has the 

form of a serles In powers of Jy,, and in 

Ilk Al 
A=0 

the second case In powers of a (moreover, 
,/AVt_ 
/ there Is the solution p = 0). In the general 

case the solution Is sought in the form of a 

//PA, series P = Pl+p,+ . . . . in which q,,/ q,_1 --f 0 

as ,i -' 0 . In view of the nonslnglevaluedness 

P of the choice of q z q, (To, U) it Is essen- 

tlal to require that the quantltles q.(y,,O) 

and qD(O, a) coincide with the nth terms In 

the expansions for 4 In powers of Jye and 

a , respectively. In what follows we shall 

Fig. 1 consider only the quantity 

qzq1= 
- n f I/G - 4Tob 

21, Gw 

Let us select any two parameters A and u ; and let us fix the remaln- 

lng parameters so that the curves a(A,p) = 0 and yo(A, p) = 0 Intersect 

(Flg.1). We shall reckon A and CI from the point of Intersection and for. 

definiteness we shall take the region yo> 0 as located above the curve 

Yo' 0, and the region a > 0 above the curve a = 0 . As the parameter 

A varies, oscillations arise which are smooth if 1 < 0 and abrupt if 

P>O 

For small values of 1~1 and IAl (here A = h - A, is a scalar) we can 

assume that r = ?,'A, a = a' (A - A,), A, = c/J, where c 
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and b and the derivatives Y', a ’ are taken at X = u = 0 . In the case 

shown In Fig.1 we have y'> 0 , a’> 0 ) c<o. Expression (2.1) takes 

the form 

q = A (A - A,) + (A2 (A - AJ2 + BA)“’ 
( 

- a’ 
A==, B=-J- -“) (2.2) 

3. Suppose that b < 0 in Equation (2.2); then A and B are positive 

(this case Is considered In [ 133). If ,j varies along the straight line 

c\ = const > 0 (with he= 0~ < 0), then when h - + 0 the amplitude changes 

by a jump from zero to the value qO = - 2AA,, -p. If now A decreases, 

then for a certain value h = A_, determined by Equation 

A2 (A_ - AJ2 + BA_ = 0, 

there occurs a drop In amplitude from the value q__ = A (A_ - Ao) to zero 
(Flg.2). Since I&, 1 - v Is a small quantity, then 

A _ z - (AA,? / B = - (Ac~)~ / B - ~1~; 

Since ILl< l&l for small p , then when IAl Is not large, Equation 

(2.2) can be put In the form 

q = q- (1 +Fl - A /A_), q_: - AA0 - ~1, A- - p2 (3.1) 
(l~l<l~-I, q->o, A-<01 

In the region A_< A -z 0 there exist two steady solutions (3.1) and 

q=o. By means of Equation (1.1) we can see that the motion corresponding 

to solution (3.1) Is stable (as observed experimentally), when the root Is 

taken with the positive sign. 

W_ 

?i_ 

In periodic motion of a medium any quantity X 

(fluid velocity, temperature, charge density, etc.) 

varies periodically. Moreover, as Is shown below, 
2 the harmonic XV of the periodic quantity X obeys 

the relation Iv 1. Hence It follows that 
-- 1 

ILI -IQ1 
In steady motion with small amplitude Q the form 

I\ 
1 ‘. 

of the oscillation Is close to sinusoidal [3,6,15 

A_ 0 A 
to 17). Accordingly, In the case of smooth tran- 

Fig. 2 
sltlon and In the case considered above of abrupt 

transition (a = y,,= 0, b -C 0 when X - A,) the 

quantltles' X vary according to a sinusoidal law for small supercrltlcalness. 

4. Let us consider the case b > 0 ; then A and B -C 0. If h varies 

along the straight line p = const > 0 , then when h = + 0 the amplitude 

changes by a jump from zero to a certain large quantity. Moreover, the 

motion can at once acquire the Irregular character of developed turbulent 

motion. if, however, a periodic motion Is set up, then the oscillations 

have the form of relaxatlonal oscillations, which are similar to dlscontl- 

nuous, and not to sinusoidal ones. The case u > 0 has not been success- 

fully treated quantitatively. 

Suppose that ,j varies along the straight line u < 0 (with A,,= CP> 0, 

see Flg.1). Then as A varies from 0 to A+- pa the amplitude q varies 
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from 0 to q+z -AA, up (Plg.3). On transition through the value A+ 

the amplitude changes by a jump from the value 9, 

to a certain large value, whilst the steady motion, 

close to sinusoidal when p - Q+, can acquire the 

irregular character of turbulent motion. If now 

h decreases, then for a certain A = A_ there 

occurs a drop In the amplitude from a certain (in 

general large) value q_ to zero. A possible form 

of the dependence 4 = p(h) Is portrayed In Fig.3 

I . . / (for the case when the motion with large amplitude 

I 
I 

rempins periodic: this occurs, for example, in 

1 the case of strata 161 . In contrast to the case 
A_ 0 n+n 

b<O, when ~1 + 0 the Quantities A_ and q- 

Fig. 3 do not vanish. 

When h and u are not large, Expression (2.2) can be represented In 

the form 

Q = !7+ (1 *VI - A 1 A+), q+ -P, A+ -_PZ (4.1) 
(IAldlA+l, Q+>O, A+>01 

The solution (4.1), In which the root is taken with the plus sign, Is 

unstable. 

We note that with Increase of supercrltlcalness the amplitude of the sta- 

ble solutions (continuous curves In Figs. 2 and 3) Increases, whilst the amp- 

litude of the unstable solutions (broken curves In Figs. 2 and 3) decreases. 

5. Let u.i denote by q+ the unstable solutions (3.1) and (4.1). Suppose 

that for a certain value A the system was In a ateady state p < p *. If 

we Impost: on the system an external perturbation (variable e.m.f. In the 

external electric field, an Imp-.lse in a magnetic field, etc.) then for an 

amplitude of perturbation X’ exceeding the value 

X*‘-V;c (5.1) 

X0 

L 
the system passes Into the steady state q > q,, and 

remains In It after removal of the external perturbation 

(this effect has been studied qualitatively In experl- 

ments [4 and 61) . If, however, I’< X: , then after 

removal of the perturbation the system again passes to 
I the steady state p < p+ . The relation (5.1), In which 

qx Is taken from (3.1), passes for small A into tie 
I relationship 

n-0 A X*‘- 7 v/-x- A.--O 
which holds good also In the general case of abrupt 

Fig. 4 transition, when a(~,) is positive and not small [ 153 . 

As the amplitude of the steady motion varies, changes occur In the fre- 

quency w and the mean value f (zeroth harmonic) of any observed quantity 

(mean temperature, magnetic Induction, direct components of the current and 
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so on); the corresponding dependences, as shown below, have the form 

X” = x + x,q + . . . 

ti = s-2, i- Q,q + . . - (5.2) 

if the steady motion Is periodic In space, then the analogous relation 

k = Ir,+k,g +... holds for the wave number. The coefficients of the powers 

of 4 in (5.2) are analytic functions of A ; the quantity x correspopds 

to the equilibrium state 4 = 0 . The values of Co and k0 are determined 

from llnkr theory. 

X0 

GL 

Ram (5.2) it follows that corresponding with the corners 

(for smooth transitions) and jumps (for abrupt transl- 

tlons)’ In the quantity Q (A), there are corners and jumps 

in the CpSntitieS X0, ~JJ, k (such corners [ 83 and jumps 

[6, 9 and 101 are found experimentally). The form of 

the dependence X0 (A) when X, (A,) > 0 Is shown In 

Fig.4 (b < 0, p, > 0), Fig.5 (% < 0, p = 0}, and Fig.6 

0 A (b > 0; P <O)* If in the case corresponding to Fig.4 

Fig. 5 
we denote by X_ the variable part of any quantity X_ 

and by Ax0 the difference between the value of R In 

the Presence of the disturbances and in their absence for a fixed value of 

A , then it is not difficult to obtain [13] (5.2) from (3.1), and for suffl- 

clently small p It becomes 

(X,z)0 / (Xwz)_ = (AX’),, / (AX’)_ = q. / q_ = 2 (5.3) 

The results presented above relate to steady motions of small amplitude, 
periodic with respect to time and (or) space. Such motions arise as a result 
of the development of growi 

and (or s 
perturbations, periodic with respect to time 
space. If, however, the perturbations growing 

X0 
t 

I 

In a slight supercritlctilness are not periodic In time, 
nor In space,.then these properties still pertain to 
the steady motion of small amplitude (such a situation 
Is possible, for example, In the case of flow .In a 
bounded space, caused by the motion of a boundary 1123). 

I 

Such a motion is defined completely, In contrast to 
periodic steady flows, which are determined only to 
within an arbitrary phase. The expressions for the 

I amplltudqof such a motion are ob;alned If we re lace 
I In thi! nonlinear Incrementi y and In Equations P 3.1), 

(4.1), (5.1), (5.3), the quantity P = g4* by the POSI- 
tive amplitude 0 . There Is Interest In finding 

0 A, A 
experimentally In such systems [2 to lo] the points 
dividing the regions of smooth and abrupt transition, 

Fig. 6 
and verify1 

t 1 

near such points the relations (3.1) and 
5.1 to 6.3 In the case b < 0 and the relations 
4.1 and (5.1) In the case b > 0 . 

6. It Is shown below how to obtalrl Expressions (1.1) and (5.2) for y , 
UJ , k and X0. The equations of hydrodynamics have the form 

, 

Iii (Xj, d / at, V, r', h) = 0 (i,j=l, . . ..N) (6.1') 

Here X are unknown quantities, X are parameters of the system, r are 

spatial coordinates, ‘J are spatial differential operators; time does not 

appear In Equations (6.1) explicitly. The functions F are single-valued 
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and analytic with respect to their arguments; wath respect to the dlfferen- 

tlal operators they are polynomials. 

Besides Equations (6.1), the quantities X have to satlsfy, In general, 

Inhomogeneous boundary conditions 
D’,iXj __ Ai 

62) 

If the vector r belongs to the surface 5’(r) = 0 (here and In what follows 

where there are two Identical Indices, one of which Is a subscript and the 

other a superscript, summation from 1 to N Is to be understood). The quan- 

tities A depend upon r and X , whilst the quantities U hepend on the 

same arguments as the functions F . It can be assumed, however, that the 

quantities U do not depend upon X , I.e. that the conditions (6.2) are 

linear with respect to X ; if this Is not the case, then It Is necessary 

to denote all the terms in (6.2) which are nonlinear with respect to X by 

XJ (j > N), and to regard them as supplementary unknowns. Moreover, It can 

be taken that u does not depend upon a/at ; If this Is not so, then it 

is necessary to denote all the derivatives with respect to t by P(j> N) 
and regard these as supplementary unknowns. 

In what follows the Indices t and j of the quantities X, U and the 

others will be dropped; then X can be regarded as a vector, whilst ii is 

a matrix operator, acting on X . 

The equlllbrlum solution X = x does not depend upon tlme and satisfies 

Equation 
F, = 0, Ux = A (6.3) 

Here F. is obtained from p by setting a/at = 0 . 

When considering systems which are unbounded In space It is necessary to 

distinguish two cases. In the case of systems of the first type the equi- 

librium solution depends upon all the Cartesian coordinates (x, y, s) (flow 

past a body). Disturbances to equilibrium X, have the form 

x, = QX,,@, 8 = wt 

Here Q Is a constant of proportionality, whilst the functions X,1(r) 

vanish [ 111 when r - m . The frequencies w = C - ty form a discrete spec- 

trum; for slight supercriticalness only one characteristic perturbation 

grows, whilst for greater supercriticalness other perturbations can grow 

also. For slight supercriticalness the steady motion of small amplitude is 

always periodic with respect to time [II]. 

In the case of systems of the second type 
K the equilibrium solution does not depend upon 

one [ 2 to IO] or several [l] of the Cartesian 
coordinates. In this case the functions X,, 
In (6.4) depend upon those same coordinates 
as the equilibrium solution x . The depend- 
ence of the perturbations upon the remaining 
coordinates is included in exponential factors 

for example, In the case of unbounded systems 
2 to 101 with cylindrical geometry x = x(r) 

Fig. 7 
~33; @ = wt - mp - kz , where m is an integer 

F, cp, z are cylindrical coordinates). 
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In this case even for slight supercriticalness there exists an infinite set 
of Increasing perturbations with different wave numbers (Fig.7). It Is not 
obvious that the Interaction of these perturbations will always lead to the 
establishment of periodic motion, as occurs In the systems [l to lo]. Appar- 
ently'cases are possible where the steady motion of small amplitude, passing 
Into equilibrium as h + + 0 , consists of a continuous spectrum of waves, 
I.e. It Is turbulent. 

First of all let us consider systems of the second type; for definiteness 
we shall have In mind the systems [2 to lo] with cylindrical eometry. In 
th Is case the steady periodic solution of the problem (6.1), 76.2) has the 
form 

X = 5 X”eive, 8 = ot - mcp - kz; X, = X, (r), X-, = X,* (6.5) 
“=-co 

Here r> cp, z are variables In a cylindrical system of coordinates . 
Quantitatively we succeed In considering only solutions (6.5) for which 

x,-x , xv+0 8s j, + 0 (here k Is a vector). Reckoning A as small, 

let us rewrite (6.2) In the form x = &+ X_ and expand F In series with 

respect to the small quantities 1,; then we shall expand the result in 

series with respect to the harnonlcs x, (V # 0), obtaining 

F G F, (X0) + St, T (L:Xv,ei”le) . . . (L,sX,sei”se) = 0 66) 

Here the second sum 1s taken for all the Integers vi, . . . . V, not eq,@ 
to zero; the matrix operators L = L (x,, 8 1 at, a 1 acp, a 1 a~, a 1 ar, 
F, h) acting on the vectors standing after them. 

Now let us construct the Fourier-components of Equations (6.6), (6.2) 

an an 
1 a, z - 
2n s 

Fe-ive de = 0 , V” & 
s 

(UX - A) e-iYedCl = 0 (6.7) 
0 0 

They have the form 

@" f &"F, (X0) + (1 - 0") L"X, + 2 z (Ll"‘sX",) - * 
s=2 " 

* (L”&) = 0 

Here L, E L,,‘; each of the operators L” Is obtained from the corre- 

sponding operator L by replacing d / at by iOV, 8 / 8Cp by imv and 
dldz by ikv; the second sum Is taken for all the numbers v not equal 

to zero and satisfying the conditions v,+ . . . + v,= v . In what follows 

Equations (6.8) will be considered for y > 0. The solution of the problem 

(6.8) will be sought In the form (") 

0 = 00 + 0,q + w‘& + . . ., q= QQ* 
Xv = Q’ (Xv,, + Xv,vtaq + Xv, v+4q2 + . . .I, X-v = Xv*, v > 0 (6.9) 

Apparently the expnslon for the frequency and the harmonics of the form 
2.9) was first established In [16 and 173 for a certain actual equation 
containing a quadratic nonllnearlty. 
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The choice of the expansions of in the form (6.9) can be explained 
In the following way. The steady amzii%de Q is determined to within an 
arbitrary phase eO. On the other hand, in the solution (6.5) the phase e 
must reduce to the form of a sum 0 + BO, whence It follows that the harmon c P 
XV 

Is equal to the product of QV with a certain function of the amplitude, 
not depending on the phase Be. The frequency w , obviously, also cannot 
depend upon the arbitrary phase 8,; this requirement Is satisfied by the 

powers of Q . Now we notice that If v1 $ . . . + V,= V > 0, then 
. f jv,l= v,+ 2n, where n>O. Hence also from (6.9) for any term in 

we obtain the estimate 

Iw,,;q . ’ . 
(qy ( _ 1 Q ,! “I’+ ... + ’ “s I- = j Q I” qn 

showing that the expansion (6.9) does not contradict Equations (6.8). 

Substituting (6.9) In (6.8) and collecting terms with the same Powers of 

p , we obtain 

@" = Q" 5 @v,v+2nqn = 0, V" = V" 2 V", v+2nqn = 0 
n=rl n=0 

Hence It follows that 

Q, - 0, Y, v+2n - V”, v+2n = 0 (v, n>O) (6.10) 

The quantities %n, Xv;'v+2n are determined successively from Equations 

(6.10). For the determination of &,, we have the problem 

moo = F, (Xc,) = 0, v,, FZ ux,, --A = 0 (6.11) 

Comparison of the problems (6.3) and (6.11) shows that Xc0 = X (r, h). 

The quantities X,, are determined from the problem 

cDll Es L/Xl1 = 0, v,, E ux,, = 0 (6.12) 

Her= md In what follows the superscript 0 shows that the given quantity 

is taken when 0 = a,,, Xc = Xc,. The problem (6.12) Is the problem of the 

theory of stability of an equilibrium state; it can have an Infinite set of 

elgenvalues oc =oc (k, m, A). For slight supercriticalness there Is only 

one eigenvalue characterizing an increasing perturbation; this should be 

taken for UJ., In the expansion (6.9); this elgenvalue (assumed simple) Is 

characterlzedbya definite value of m (In the case [ 5 and 63 the value m =O; 

In the case [7 to lo] the va?ue m = f 1 ; In the case [2 and 43 the motion 

with m = 0 Is fully studied [2 to 43, but there arises a steady periodic 

solLtlon [4] also with m # 0). To the eigenvalue m0 there corresponds an 

eigenfunction C&x,, , where C, Is an arbitrary constant, and xL1 Is a func- 

tion normalized in any way. The constant cc remains arbitrary ; we can 

take C,=l, in so far as the choice of a value cc# 1 Is equivalent to a 

change of normalization of X,, and a related change of the amplitude Q . 

In the general case the problem (6.10) for determining X","+2n has the 

form (*) 

@ Y. v+2n - = Lv0Xv,v+2n + Yy,v+an = 0, v","+an = UX","+2n = 0 

(v + 2n > 1) (6.13) 

*) The expressions &(x0) and I,, are connected by the relation 
L, = aF,/aX, . 



Abrupt onset of steady flows in hydrodynamics 355 

Here the functions Y do not depend upon XV,V+2n and contain already 

determined quantities. 

In the Appendix It Is shown that for sufficiently slight supercrltlcalness 

the homogeneous problem (6.13) with v # 1 does not have a solution, other 

than the trivial one Xv,v+Zn = 0; Accordingly, the solution of the lnhomo- 

geneous problem (6.13) Is [14] 

7.2 

X Y, v+an = - s Gv” (r, P) Yv, v+2n (P) dp (C,” = c (wo)) (6.14) 
1”1 

Here r,, r, are boundary values of the radii, such that r2 > r > rl 
(In the case of systems [5 to lo] the value of r, is zero); whilst the mat- 

rix operator G (0) Is the Green's function of the problem (6.12), In which 

Instead of I,~= L,(cu,) we have the operator L - Li(m) (the other arguments 

of ~~~ and z co&clde). 

The Green's function G(o) can be represented in the form [14] 

G=- ;;$“’ Eo$ + G_ (J zzz [ XlliZi* dp) (6.15) 
r1 

Here u)~ Is the elgenvalue of the problem (6.12) characterizing the 

Increasing perturbation, x,~ Is the corresponding elgenfunctlon; Z=(Z,,. . . 

. . . ..Z..} Is the elgenfunction of the ajolnt problem to (6.12), the corre- 

sponding eigenvalue being Q,*; the function C_'ls regular when UI = UJ~ 

From (6.15) and (6.14) it follows that the solution of the problem (6.13) 

with v I 1 exists only under the condition 
r. 

s Zi*Yl,l+,ni dp = 0 (6.16) 
71 

and has the form fr 

in 

X 1,1+an = - s G_” (r, P) Yyl,l+m (P) dp + C,x,,’ (6.17), 
T1 

The condition (6.16) determines the quantity 6& . The quantities Y 

(6.16) are given by 

Y 1.1+m = @2n (a, / amy x,1 + ~Ll+m (6.18) 

Here TI.I+s~ contains quantities determined earlier. After substituting 

(6.18) In (6.16), we obtain 

p1 
1 

%n= -Jo Zi” T . d I.i+an P 
PI rl 

The quantity Jo Is different from zero; In particular, 

equations of the form 
ax/at+F =o 

(6.19) 

for starting 

(6.20) 

where F does not depend upon a/at (Equations (6.1) can usually be put 

into such a form by introducing supplementary unknowns), Jo differs from 

J # 0 in (6.15) only by a numerical factor. The constant C, ln (6.17) 

remains arbitrary; we can take C.m.0 In so far as the choice of a value 



356 1u.B. Ponomarenko 

C,# 0 Is equivalent to a change of normalization of xU (see Apendlx). 

It Is Interesting to clarify what quantities must first be calculated In 

order to determine X, "+c,,. Let us construct Table 1 from the quantities 

TABLE1 X Y. v+2n and ~2ll - It can be shown 

that In Equation (6.13) there occur all 

__-.___ 

TI ' 1 ’ 1 ’ / ’ 1 ’ 1 ’ 

the elements of the table standing to 

the left of the diagonals drawn through 

--- the element Xv,v+sn+2. Hence It follows 

0 xv0 x02 X04 that In order to find .aZn It Is neces- 

1 J,ll,OO x13,02 Xl&@4 sary first to find iYn.l,n+I, i.e. 

2 X22 X2.4 necessary to calculate the (n+l)th 
3 X33 x35 harmonic of the periodic motion. 

The frequencies 02n = Qs,, - ir,, 

are complex. In so far as the frequency UI In (6.5), (6.9) must be real, 

then It is necessary that 

0 = !& + Q,q + c&q2 + . . . = Q (6.21) 

y = To + w7+&2 + * * . = 0 (6.22) 

Here the coefficients of the powers of 4 are tiown functions of k and A. 

7. In order to determine the wave number and amplitude of the steady 

periodic motion there Is as yet only one Equation (6.22); the second follows 

from from the following hypothesis [15]: In the system a motion will become 

extablished of such amplitude that the maximum of the nonlinear incement y 

as a function of the wave number k is zero (Fig.7); the value k for 

which the maximal Increment of y Is equal to zero Is also the wave number 

of the steady motion. This hypothesis Is related to the fact that the value 

of P for which the maximal inc,ement Is zero Is uniquely qualltatlvely 

s'ngled out from other values L: q . 

According to the hypothesis thus made, the quantities k, p satisfy 

Equation 
ayldk G y; + y;q + y;q2 f... = 0 (7.1) 

This equation shows that the hypothesis made above Is equivalent to the 

following: In the system a motion becomes established with that wave number 

for which the quantity q , determined by Equation (6.22) and considered as 

a function of k , is maximal. 

This solution of Equation (7.1) Is sought In the form 

k = ko + klq + kzq2 f... (7.2) 

Substltutlng (7.2) in (7.1), carrying out the expansion with respect to 

4 and equating to zero the coefficients of the powers of p , we obtain 

y; = 0, y;;kl + y; = 0, . . . (7.3) 

Here the quantities y are taken when k = Lr, . 

From (7.3) one determines one after the other the quantities k,. The 
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first equation determines kP= k,,(X) and shows that when k I kO the linear 

Increment y,, Is maxlmai (Flg.7). From the second equation one obtains 

h,= - YVYi ; It Is lmtnedlately obvious from Fig.7 that for slight super- 

criticalness YCO # 0 . Similarly one finds also the other quantities 

kD= k,(X) . 

Substituting (7.2) In (6.21), (6.22) and collecting terms with the same 

powers of P , we obtain 

0 = 52, + s2,q + . . . (al= !& _1- R<kl, . . .I (7.4) 

7 G y. + aq + bq2 + . . . = 0, (a = Tz) b = r4 + -r2’kl$- ‘/zT& (7.5) 

Here the quantities yan are taken when k I k, ; the coefficients of 

powers of g In (7.4), (7,5) are known functions of the parameters X . 

The solutions of Equations (7.5) are found In Sections 1 to 5. 

We notice that In systems of the second type the case of aperiodic ln- 
creasing perturbations (here [2] the function 8, (k) z 0) Is not ln any way 
singled out from the point of view of appllcablllty of the calculation; we 
can, however, show (see Appendix), that in this case the steady periodic 
solution of small amplitude does not depend on time. 

8. Let us conslder'systems of the first type (the equilibrium state 

depends upon all the Cartesian coordinates, whilst perturbations and the 

steady motion are not periodic with respect to any of the Cartesian coordl- 

nates). 

Suppose that the increasing perturbation has an oscillatory character[lI]; 

then the calculations of Section 6 are not altered If only the quantities 

f, P are regarded as vectors (and Integration with respect to p Is carried 

out throughout the whole volume V , occupied by the flowing fluid), and 

moreover In the given case e-at. 

Expressions (6.5) and (6.9) show that Q occurs ln the steady solutlon 

in the form of the combination QeiWt = Q(t). 

The amplitude g(t) evidently satisfies Equation 

dQldt = ioQ (8.1) 

which retains sense even when y # 0 ; in particular, (8.1) passes over 

into the equation of linear theory If we neglect ln UJ all powers of q . 

If in (8.1) we set Q = 1 Qjeie and separate the real and Imaginary parts, 

then we obtain (1.1) and Equation d8/dt = 52. 

In the case of systems of the first type the observed steady periodic 

motion always correspond to the stable solutions of Equation (1.1) (in which 

Y IS taken ln the form (6.22)). 

In the case of systems of the second type steady motion beoomes establiekd 

as a result of the interaction of a continuous spectrum of increasing waves. 

In the study of stability of steady solutions of Bquatlon (1.1) for the 

divergence bq from the steady value of q we obtain 

d6q/dt = 6q (y + qb’y/aq + q (8ylak)dkldq) (fw 
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Here Y - y(k, 9) 1s defined In (6.221, and k = k(Q) In (7.1), (7.2). 

By virtue of (6.22) and (‘i’.l), there remains In (8.2) only the second term, 

In which k is equal to the wave number of the steady solution (7.2); hence 

It follows that the stability of the steady solution with the wave number 

(7.2) IS studled only with respect to the perturbation 69 with the same 

wave number. Accordingly, study of the stability on the basis of Equation 

(1.1) Is not In the given case complete (in contrast to the case of Systems 

of the first type), and the observed steady motions correspond to the stable 

steady solutions of (1.1) only when the former really are periodic 

Now let us consider systems of the first type which for slight supercrlti- 

calness are unstable with respect to aperiodic perturbation. It Is to be 

expected that the steady solution In this case does not depend on time and 

IS determined completely (It does not contain an arbitrary phase). It can 

be assumed that x = A = 0 for problems (6.1), (6.2) (this can always be 

achieved by the Introduction of a new unbown I+= x -x) . We seek the 

solution In the form 

X= QX,+ Q2X,+. . ., d / dt = 7 E rO + Qrl -I- Q2y2 + . . . (8.3) 

of 

x, 

Here Q Is the real amplitude; It is convenient to take 0 > 0 . 

Substituting (8.3) In (6.1), (6.2) and equating to zero the coefficients 

powers of Q , we obtain the problems for the determination of Yn_, and 

When n I 1 we obtain the linear problem of the theory of stability 

LOX, = 0, lJx,=o (L = L 0, V, r, h)) (8.4) 

Here and In what follows the superscript o Indicates that the correspond- 

ing quantity is taken when Y = Y0 . For Y0 and 1, In (8.3) one should 

take the elgenvalue (assumed simple) and the eigenfunction of the problem 

(8.4) which characterize the Increasing perturbation; according to the con- 

dition YO> 0 and therefore X, can be assumed real. When n > 1 we have 

the problem 
LOX,, -t m-1 (3-L / 87)” X, + T,, = 0, ux,, = 0 (8.5) 

Here T,, depends on quantities determined earlier. Let C(Y) be the 

Green’s function for the problem (8.4); it is obtained from (6.15) by 

replacing XII by x1 and tm by Y . From (8.4) and (6.15) it follows 

that the solution of the problem (8.5) exists under the condltlon 

and has the form (8.7) 

Here 2 Is the real eigenfunctlon of the adjolnt problem (8.8), corre- 

spond’ng to the value Yo>O * The constants C, are arbitrary; we can set 
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0, = 0 (and the normalization of the function X1 Is unchanged). 

To the observed motions correspond the stable steady solutions Q > 0 of 

F,quatlon dQ / dt = yQ, where y is determined from (8.4). It can be 

shown (see Appendix) that v Is real for sufficiently small values of Q . 

It Is to be noted that the nonlinear increment y can be calculated b 
a method differing from those described in Sections 6 and 8 (see Appendix 5 

All that was said above concerning abrupt transition Is applicable to 
systems with a finite number of degrees of freedom (described by the ordinary 
differential equations (6.1)). In this case Equations (6.10) are algebraic, 
and the problem of finding the quantities mc7~7 “.“+zn simplifies so much as 
to make possible the consideration of actual examples 1181 (without the 
apglication of computers). 

Appendix, We shall show that the homogeneous problem (6.13) with v # 1 
does not have nontrivial solutions. It is sufficient to prove the assertion 
for A-0; then it remains true also for sufficiently small A , In so . 
far as q + 0 when A + 0 (here A Is a vector). According to the defini- 
tion of the critical parameters XI , the linear Increment y - yo(k, A,) 
vanishes when k I k,, ( 1,) = k+ and Is negative when k # k+ lPig.7). More- 
over, the frequency ~1~’ ur,(lt, A,+) Is real when k = k (and equal to WS) 
and complex when k # kw . Accordingly, problem (6.13f with the operator 
L+= LIO (A,) has a real eigenvalue UJo- u* only when k = ktr ; when k= vkx 
(v # 1) the elgenvalues w0 are complex, and consequently the real value 
all= VU)* is not an elgenvalue. 

We shall show that the choice of the constants C, # 0 In (6.1~)~ (8.9) 
is equivalent to a change of normalization of X,, and X, . Let q be the 
amplitude of the steady solution corresponding to the choice C, - 1 , 
c, = c, = . . . = 0 . Let us introduce the “new” amplitude Q* by Equation 

Q = C (Q / C) - C (Q^) (A. 1) 
If we take C in the form 

C = C,* + C,^q^ + C,“(9”)2 + . . ., qA = Q^Q”* 

substitute (A.l) In the solution of (6.5) and (6.9) and collect terms with 
identical powers of Q*, then we obtain expressions depending on the con- 
stants * .. c, , c, , . . . ; they can be selected so as to obtain the solution 
of (6.9) with arbitrary values of the constants C , Cl, A similar 
transformation of the solution of (6.9) is obtalnea If &iead of (A-1) we 
take Xl1 = C (X,, 1 C) = CXn* In Expressions of X,, v+2n in terms of XII. 

We shall show that if in (6.9) the quantity S&, E 0, then also 82,. = p> 1.e’. 
the steady periodic solution does not depend on time. Let us seek the solu- 
tion x in the form of a real Fourier series with respect to the spatial 
coordinates, in which the nth harmonic is proportional to exp nyt . The 
coefficients of the series and the increment y will be sought in the form 
of an expansion of type (6.9) with respect to the real amplitude Q . More- 
over, to determine yaS and the quantities of type XvSv+cn we obtain real 
equations (in so far as the starting problem (6.1), (6.2) is real). Accord- 
ing to the condition, 
can be taken real; G(v 

is real, and therefore the functions of type X,, 

the uantlties of type 
s 

g, v+zn are obtained realY ’ and therefore ‘a’ and 
Is also real for real 

. In the case of the prob- 
lem 8.3) to (8.7) the quantities yn are also real. 

The steady solutions can be found by the method of [171, in which the 
dependence on time is completely included In the amplitude ; In the case 
of periodic solutions for Q we postulate Equations (8.1), 6.9), and seek 
a solution for X in the form 

x= ;xn (I X, I - I Q I”) 
n=o 

It is appropriate to take X0= x and 
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Then for the real quantities X, we obtain 

X, = 5 Q"-" (Q*)" J&v n, c,, n = x,,:, N.4) 
v=c 

For slmpllclty we shall assume that the ptartlng equations have the form 
then on substituting (A.&), (A.2) In (6.20) we obtain with the help 

d (QVqn) / dt = QYqn (ivo + 2ny) (w = 8 - ir) &5) 

when A = 0 it 

In the case of aperiodic steady motion It Is appropriate to postulate for 
that dQj dt=rQ; where 

8.4). In this case 
y, x are chosen In accordance with (8.3) and 

dQ* / dt = Q” (T 9 (n - 1) 7) (‘4.6) 

Then problem (6.20), (6.2) Is solved just as In the case of perlodlc 
steady motion. 

We note that for solution of the problem (6.20). (6.2) by the method 
described In Sections 6 and 8, we take Into account only the first terms In 
the left-hand sides of (A.5) and (A.6 
pressions for the derivatives (A.5), 

. In both methods, however, the ex- 

meaning when y I 0 ; 
A.6) have one and the same physical 

hence It follows that the solutions obtained by the 
two methods are physically Identical and differ only In the normalization 
of the functions X,, and X, . 

The author Is grateful to A.A. Vedenov, M.A. Leontovich and M.A. Nalmark 

for discussion of various questions touched upon In this paper. 
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