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This 1s a study of the transition from laminar steady motion to turbulent,
in systems described by equations of the hydrodynamic type. We describe the
method of finding perlodic steady motions of small amplitude. The latter is
expressed 1in explicit form in terms of the parameters of the system near the
borderline separating the regions of smooth and abrupt transition.

l, It .s well known that in the transition from the laminar state to the
turbulent in a number of systems, a motion is set up with a definite fre-
quency and wave vector when slight supercriticalness takes place {as an exam-
ple we may take convection between parallel plates [1], the fiow of a liquid
between rotating cylinders [2 to 4], the strata in a gaseous dlscharge [5
and 6]. helical instabllity in a gaseous discharge and semi-conductors [7 to
10]; a motion, periodic with respect to time, arises also in the flow past
rigld bodies [11]). The frequency and the wave number, and also the form of
the oscillation, can be approximately determined from linear theory; to find

the amplitude @ , however, it is necessary to take into account nonlinear
effects.

It is shown below that the equation for the square of the modulus of the
amplitude ¢ = @Q* of a steady periodic motion has the form (for small gq)

d —
Jg = 2q(yo + aq + bg® +-...) = 2qy (1.1)
The phase of the amplitude ¢ (and consequently also the phase of the
steady solution) is arbitrary. The coefficlents Yo @» b, ... are functions

of the parameters of the system X (the temperature, the geometric dimensions,
the external magnetic fleld and so on); vy, 1s the growth rate given by lin-
ear theory, whilst the second and third terms in y are related to the inclu-~
slon of nonlinear effects.

The critical parameters A, are defined by Equation yo(h*) = 0; the equi-~
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librium state ¢ = O 4is unstable when vy, (1) > O .

Let the system be such that g(A )# O for any values of \,. If g(r,)<O,
then with an increase of supercriticalness A = A — A, the amplitude of the
steady motion continuously increases from zero (the "smooth" behavior); 1n
this case from Equation y = O we obtain ¢g=~ — (a”'dy,/ dA), A. Ir
a{x,) > O, then as A passes through the critical value \, the amplitude
changes from zero up to a certain finite value by a jump [4, 6, 9 and 10)
(the "abrupt" behavior); in this case the amplitude, in general, 1s not
small for small supercriticalness, whilst the motion itself can have the
irregular character of developed turbulent motion.

2. Let us consider systems for which, for certain values of the para-
meters X, , Equations y,=q = O are satisfied. In such systems [2 to 10],
depending on the values of A4 , both smooth [3, 6 and 8] and abrupt transi-
tions [4, 6, 9 and 10) of steady motlon are possible,

Suppose that when X = A, the relations y,=g = 0 and b # O are satis-
fied. Then for sufficlently small A the quantitles vy, and g are small,
whillst b # O . The ratio of the quantities vyo and g 1is arbitrary, 1n so
far as 1t depends upon the direction of the vector A . Accordingly, in
finding solutions g4 of Equation y = O we must regard the quantitles vy,
and ¢ as independent small parameters. It 1s easy to find the solution‘g
in the particular cases g = 0 or vy,= 0 . In the first case ¢ has the

form of a serles in powers of /y,, and in
A A Al the second case in powers of g (moreover,

/’A:A‘ there 1s the solutlon g = 0). In the general
A case the solution 1s sought in the form of a
A g A4y series ¢ =¢,+g + ..., in which ¢,/ g, , — 0
as 1 - 0 . In view of the nonsinglevaluedness

0 { © of the cholce of ¢ = qn(To,a) 1t is essen-
tiai to require that the quantities ¢, (y,,0)

y and g¢,(0, a) coincide with the nth terms in

AA7 the expansions for g 1n powers of /[y, and

a , respectively. In what follows we shall
Fig. 1 conslder only the quantity

_ oy
q=q1L = 4k ];Z iL (2.1)

Let us select any two parameters X and pu ; and let us fix the remaln-
ing parameters so that the curves a(x,p) = 0 and yo(x, u} = O 1intersect
(Fig.1). We shall reckon A and u from the point of intersection and for,
definiteness we shall take the region y,> O as located above the curve
Yo= O , and the region g > O above the curve g = O . As the parameter
X varles, oscillations arise which are smooth 1f u < O and abrupt if
p>0

Por small values of |u| and |[A}] (here A =x — X, 1s a scalar) we can
assume that T = TA, a=a (A —Ay), Ay = cu, where ¢
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and » and the derivatives vy', ¢’ are taken at X =y = 0 . In the case
shown in Fig.l we have y’> 0, a’> 0, o < O . Expression (2.1) takes
the form

g=A4@A—A) @@ —AP+BA (4=, =) @2

3. Suppose that » < O 1in Equation (2.2); then 4 and p are positive
(this case 1s considered in [13]). If p varles along the straight line
M = const > O (with pA,= ou < O), then when A = + O the amplitude changes
by a Jump from zero to the value ¢, = — 24A; ~ . 1If now A decreases,
then for a certain value A = A_, determined by Equation

A*(AL—Ay* + BA_ =0,

there occurs a drop in amplitude from the value g = A (A_ —_ Ao) to zero
(Fig.2). Since |p,| ~u 1s a small quantity, then

A~ — (AA)? /B = — (Acp)* /| B ~p%
Since |A_|<€|A¢| for small . , then when |A| 1s not large, Equation
(2.2) can be put in the form .

g=q (1 V1 —ATA), q=—AA ~u A_~p* (3.1)
(IAISIALL ¢->0, A_0)
In the region A_< A < O there exlst two steady solutions (3.1) and
g = 0 . By means of Equation (1.1) we can see that the motion corresponding
to solution (3.1) is stable (as observed experimentally), when the root is
taken with the positlve sign.

/g In periodic motion of a medlum any quantity x
(fluld velocity, temperature, charge density, etc.)
- varlies perlodically. Moreover, as 1s shown below,
z the harmonlc Xv of the perlodic quantity x obeys
the relation lel N‘Q | {vl, Hence it follows that
in steady motion with small amplitude ¢ the form
:\\ of the oscillatlon 1s close to sinusoidal [3,6,15
'A 0 A to 17). Accordingly, in the case of smooth tran-
- sition and in the case considered above of abrupt
Fig. 2 transition (g = yo= 0, » < O when X =1,) the
quantities' ¥ vary according to a sinusoidal law for small supercriticalness.

4, Let us consider the case p»> O ; then 4 and p< 0, If A varles
along the straight line . = const > O , then when A = + O the amplitude
changes by a jump from zero to a certain large quantity. Moreover, the
motion can at once acquire the irregular character of developed turbulent
motion. Af, however, a periodic motion 1s set up, then the oscillations
have the form of relaxational osclllatlions, which are similar to disconti-
nuous, and not to sinusoldal ones. The case yu > O has not been success-~
fully treated quantitatively.

Suppose that A varles along the straight line u < O (Wwith A = eu> O,
see Fig.1). Then as A varles from O to A,~p® the amplitude g varies
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from Q) to g, ~ — AA;~p (Fig.3). On transition through the value A,
the amplitude changes by a Jump from the value g4,
to a certaln large value, whilst the steady motion,
close to sinusoldal when g4 = g,, can acquire the
irregular character of turbulent motion. If now

A decreases, then for a certaln A = A_ there
occurs a drop in the amplitude from a certain (in
general large) value g¢_ to zero. A possible form

’ \~\‘*~‘~\‘ . of the dependence ¢ = g{(A) 1s portrayed in Fig.3

: b N (for the case when the motion with large amplitude

: I———' remelns periodic: thils occurs, for example, in

1 : the case of strata [6] . In contrast to the case

A‘ 0 A4 b< 0O, when p - O the quantities A_. and g¢-
Flg. 3 do not vanish,

When A &and u are not large, Expression (2.2) can be represented in
the form

g=¢ (1 £VI—ATAK), ¢, ~p A ~p (4.1)
(IAISTALL 242>0, AL>0)

The solution (4.1), in which the root is taken with the plus sign, 1s
unstable.

We note that with increase of supercriticalness the amplitude of the sta-
ble solutions (continuous curves in Figs. 2 and 3) increases, whilst the amp-
litude of the unstable solutlons (broken curves in Figs. 2 and 3) decreases.

5. Let us denote by ¢, the unstable solutions (3.1) and (4.1). Suppose
that for a certain value A the system was in a ateady state ¢ < g¢,. If
we impose on the system an externsl perturbation (variable e.m.f. in the
external electric field, an imp lse in a magnetic field, etc.) then for an
amplitude of perturbation X’ exceeding the value

Xy ~V g (5.1)
X the system passes 1lnto the steady state ¢ > ¢, and
’/, remalns in it after removal of the external perturbation

(this effect has been studied qualitatively in experi-
ments [4 and 6]). If, however, x’< yi , then after
removal of the perturbation the system agaln passes to

| the steady state ¢ < g, . The relation (5.1), in which
' gx 1is taken from (3.1), passes for small A into the

} relationship

A0 A X, ~V—A A->—0

which holds good also in the general case of abrupt
transition, when g¢(i,) is positive and not small [15].

Fig. 4

As the amplitude of the steady motlon varies, changes occur 1n the fre-

quency w and the mean value }° (zeroth harmonic) of any observed quantity
(mean temperature, magnetic induction, direct components of the current and
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so on); the corresponding dependences, as shown below, have the form

Xo=yx+Xq9+...

n !

s e BV |
o = £y 4+ Q9+ .

—_—
23]
Do

S

if the steady motion 1s periodic in space, then the analogous relation

k = kytkgt... holds for the wave number. The coefficlents of the powers
of ¢ in (5.2) are analytic functions of A ; the quantity y correspogds

to the equilibrium state ¢ = O . The values of (), and J, are determined

from linear theory.

From (5.2) it follows that corresponding with the coarners
(for smooth transitions) and jumps (for abrupt transi-
tions) in the quantity g(A), there are corners and jumps
in the quantities x°, w, x (such corners (8] and jumps
_‘__,——’ [6, 9 and 10] are found experimentally). The form of
the dependence X° (A) when X, (Ay) > 0 1s shown in
Fig.h (b <0, p>>0), Fig.5 (b <0, p = 0), and Fig.6

0 A (b > O,p,<:(», If in the case corresponding to Fig.lh
we denote by X_ the variable part of any quantity r.
Fig. 5 and by AX° the difference between the value of x° in
the presence of the disturbances and in their absence for a fixed value of
A , then 1t 1s not difficult to obtain {13) (5.2) from (3.1), and for suffi-
clently small yu 1t becomes

(X %o / (XP). = (AX)o / (AX). = g5/ q_ = 2 (5.3)

The results presented above relate to steady motions of small amplitude,
periodic with respect to time and (or) space. Such motlons arise as a result
of the development of growing perturbations, perlodic with respect to time

and (or) space. If, however, the perturbations growing
° in a slight supercriticalness are not pericdic in time,
X * nor in space,.then these properties still pertain to
the steady motlon of small amplitude (such a situation
is possible, for example, in the case of flow in a
bounded space, caused by the motion of a boundary [12]).
Such a motion is defined completely, in contrast to
perlodic steady flows, which are determined only to
within an arbitrary phase. The expressions for the
amplitude of such a motion are obtained if we replace
in thé nonlinear increment y and in Equations (3.1),
(#.1), (5.1), (5.3), the quantity ¢ = Q¢* by the posi-
tive amplitude ¢ . There 1s interest 1n finding
experimentally in such systems [2 to 10} the points
0 A, A dividing the regions of smooth and abrupt transition,
and verifylng near such points the relations (3.1) and
Fig. © 25.13 to 6.3) in the case b < O and the relations
4,1} and (5.1) in the case » > O .

6. It is shown below how to obtain Expressions (1.1) and (5.2) for vy ,
w , ¥ and x°. The equations of hydrodynamics have the form

F (X' alot, v, r,\) =0 (i,j=1,...,N) (6.1)
Here X are unknown quantities, A are parameters of the system, r are

spatial coordinates, \y are spatdal differential operators; time does not
appear in Equations (6.1) explicitly. The functions F are single-valued

X°

/
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and analytic with respect to their arguments; wath respect to the differen-
tial operators they are polynomials.

Besides Equations (6.1), the quantities X have to satisfy, in general,

inhomogeneous boundary conditlons
UX' =4 (6.2)

if the vector r belongs to the surface S(r) = O (here and in what follows
where there are two ldentical indices, one of which is a subscript and the
other a superscript, summatlon from 1 to ¥ 1s to be understood). The quan-
tities 4 depend upon r and i , whllst the quantities ¢ aepend on the
same arguments as the functions #F . It can be assumed, however, that the
quantitles ¢ do not depend upon Y , i.e. that the conditlons (6.2) are
linear with respect to xy ; 1f this 1s not the case, then 1t 1s necessary
to denote all the terms in (6.2) which are nonlinear with respect to Y by
Xt (4> #), and to regard them as supplementary unknowns. Moreover, it can
be taken that U does not depend upon b/Bt ; 1f this 1s not so, then 1t
1s necessary to denote all the derivatives with respect to ¢ Dby XJ(J> )
and regard these as supplementary unknowns.

In what follows the indices ¢ and j of the quantitles x, U/ and the
others willl be dropped; then X can be regarded as a vector, whilst ¢ 1s
a matrix operator, acting on ¥

The equilibrium solution ¥ = y does not depend upon tlme and satisfies
Fy =0, Uy = A (6.3)
Here F, 1s obtalned from p by setting B/at =0 .

Equation

When consldering systems which are unbounded in space it is necessary to
distinguish two cases. In the case of systems of the first type the equl-
librium solutlon depends upon all the Cartesian coordinates (x, y, z) (flow
past a body). Disturbances to equilibrium X, have the form

X, = QX 0 = ot (6.4)

Here @ 1s a constant of proportionality, whilst the functions Xxx(r)
vanish [11] when r - @ ., The frequencies w =0 — 1y form a discrete spec-
trum; for slight supercriticalness only one characterlstlc perturbation
grows, whillst for greater supercriticalness other perturbations can grow
also. FPFor slight supercriticalness the steady motion of small amplitude is
always periodic with respect to time [11].

In the case of systems of the second type
¥ K the equilibrium solution does not depend upon
//7\\ // one [2 to 10] or several [1] of the Cartesian
0 L coordinates. In thls case the functions X,
Ko K in (6.4) depend upon those same coordinates
as the equilibrium solution y . The depend-
’ ence of the perturbations upon the remaining
$(A) ¥A) coordinates 1s included in exponential factors
éfor example, in the case of unbounded systems
2 to 10] with cylindrical geometry x = x(r
and 8 = wt —mo — kz , where m 1s an integer
Fig. 7 and r, 9, z are cylindrical coordinates).
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In this case even for slight supercriticalness there erxists an inflnite set
of increasing perturbations with different wave numbers (Fig.7). It 1s not
obvious that the interaction of these perturbations will always lead to the
establishment of periodic motion, as occurs in the systems [1 to 10]. Appar-
ently cases are possible where the steady motian of small amplitude, passing
into equilibrium as A - + O, consists of a continuous spectrum of waves,
1.e. 1t is turbulent.

First of all let us consider systems of the second type; for definiteness
we shall have in mind the systems [2 to 10] with cylindrical geometry. In
this case the steady periodic solution of the problem (6.1), (6.2) has the
form

[ee]
X= 3 Xe 0=ot—mp—ky X,=2X () X.,=X* 6.5
V=00

Here r, @, z are variables in a cylindrical system of coordinates .

Quantitétively we succeed 1n considering only solutions (6.5) for which
Yo~ x . X7 0O as A - O (here £ 1is a vector). Reckoning A as small,
let us rewrite (6.2) in the form ¥ = Xo+ X_ and expand F 1in series with
respect to the small quantities X.; then we shall expand the result in
serles with respect to the harnonics x, (v # 0), obtaining

o]
. iv 0
F=Fy(Xo) + 2 DULSXoe?) .. (L'X, ") =0 (6.6)
8=] v
Here the second sum 1s taken for all the integers v,, ..., v, not equal
to zero; the matrix operators L =L (X, 8/ 4dt, 8/ de, 8/ dz, 8/ or,
I, A} acting on the vectors standing after them.
Now let us construct the Fourier-components of Equations (6.6), (6.2)
£ 7 i
D, =5 S Fe-»dp = 0, V= S (UX — A4) e%d8 = 0 (6.7)
0

0

They have the form

q)v = 6O\JFO (Xo) + (1 - aov) Lva + 2 2 (le‘sle) « .. (Lav:Xvs) == O

8=32 v
1, v=0 6.8
V, = UX, — 4dy = 0, 6ov={0. v=+0 ©8)
Here L, = Ll,,l; each of the operators L, 1s obtained from the corre-
sponding operator I by replacing 0/ dt by iov, /09 by imv and
@/ 0z by ikv; the second sum is taken for all the numbers v not equal
to zero and satisfying the conditions v+ ... + v,= v . In what follows
Equations (6.8) will be considered for v > (. The solution of the problem
(6.8) will be sought in the form (*)
® = 0 T 0,9 + 04¢* + . . ., qg= Q0*

X, = Q X+ Xy g+ Xovu@+..), Xoo=X* v>0 (6.9

*g Apparently the expnsion for the frequency and the harmonics of the form
(6.9) was first established in [16 and 17] for a certain actual equation
containing a quadratic nonlinearity.
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The cholce of the expansions of w, in the form (6.9) can be explained
in the following way. The steady amplitﬁde 1s determined to within an
arbitrary phase @,. On the other hand, in the solution (6.5) the phase 4§
must reduce to the form of a sum 6 + 8,, whence it follows that the harmonic
X,, is equal to the product of @V with a certaln function of the amplitude,
not depending on the phase 6,. The frequency w , obviously, also cannot
depend upon the arbitrary phase §,; this requirement is satisfied by the
series in powers of ¢ . Now we notice that if v+ ...+ v, =v2>>0, then
[v [+ . .+ |vg|= v 2n, where n>0. Hence also from (6 9) for any term in
(6.8) we ‘obtaih the estimate

[ RPN S S TP S (I

showing that the expansion (6.9) does not contradict Equations (6.8).

Substituting (6.9) in (6.8) and collecting terms with the same powers of
g ,» we obtain

O 2 (I)v vian @™ = 0, VvV, = ()v nzo Vv, vigng" = 0
Hence it follows that
d)v, vian = 0, Vi vign = 0 v, n>0) (6.10)

The quantities g, )(ww+m, are determined successively from Equations
(6.10). For the determination of x,, we have the problem

Dy = Fy (Xg0) = 0, Voo =UXgp—4 =0 (6.11)
Comparison of the problems (6.3) and (6.11) shows that Xy, = ¥ (7, A).

The quantities JX,; are determined from the problem
@, = L,°X,; = 0, Vu=UX,; =0 (6.12)

Her: and in what follows the superscript © shows that the given quantity
is taken when © = @y, X, = Xy The problem (6.12) is the problem of the
theory of stability of an equilibrium state; 1t can have an inflnite set of
eigenvalues @y = wy (k, m, A). For slight supercriticalness there is only
one elgenvalue characterizing an increasing perturbation; this should be
taken for w, in the expansion (6.9); this eigenvalue (assumed simple) 1s
characterized by a definite value of m (in the case [5 and 6] the value m =0;
in the case [7 to 10] the value m =+ 1 ; 4in the case [2 and 4] the motion
with m = 0 1s fully studied [2 to 4], but there arises a steady periodic
solution [4] also with m # 0). To the eigenvalue w, there corresponds an
eigenfunction (,x,, , where (, is an arbitrary constant, and x, 1s a func-
tion normalized in any way. The constant (, remalns arbltrary ; we can
take (,= 1 , 1n so far as the cholce of a value (,# 1 1s equivalent to a
change of normalization of X, and a related change of the amplitude ¢ .

In the general case the problem (6.10) for determining X, , .., has the
form (*)
(Dv. vizn = LvOXv, v+an -+ lP‘w, vign = O, Vv, vign = UXv, vign = 0
(v+2n>1) (6.13)

* The expressions I,(X,) and F,{(X,) are connected by the relation

Lo= a1’"0/310 .
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Here the functions Y do not depend upon X, ,,s, and contain already
determined quantities.

In the Appendix it is shown that for sufficiently slight supercritlcalness
the homogeneous problem (6.13) with v # 1 does not have a solution, other
than the trivial one X, ,,,, = 0; Accordingly, the solution of the inhomo-
geneous problem (6.13) is [14)

Tz
Xovim = — G0 (r, p) ¥orvian (0)dp  (Gr=C(vag)  (6.14)
r

Here 7,, ', are boundary values of the radil, such that r, >r>rn
(in the case of systems [5 to 10] the value of r, 18 zero); whilst the mat-
rix operator G (®) is the Green's function of the problem (6.12), in which
Instead of ,°= Lx(wo) we have the operator [ = [, {w) (the other arguments
of 7,° and 1 coincide),

The Green's function G ﬁo) can be represented in the form [14]

(= TuOZ0 g (s :\ Xurd) (6.45)

(i — iwg) J

Ty
Here w, is the elgenvalue of the problem (6.12) characterizing the
increasing perturbation, ¥, 1is the corresponding eigenfunction; Z’={Zl,...
eess.Zy} 1s the elgenfunction of the ajoint problem to (6.12), the corre-
sponding eigenvalue being w,*; the function G_'is regular when w = w,
From (6.15) and (6.14) it follows that the solution of the problem (6.13)
with y = 1 exists only under the condition

rs

Szi*qu.l+21li dp =0 (616)

Ty

and has the form -

Xi14am = — S G.° (r, p) Yy rean (0) dp + Co Xy, (6.17)

T
The condition (6.16) determines the quantity ®,, . The quantities vy
in (6.16) are given by

Wy1ean = Ogn (0L / 00)° Xyy + Tipeem (6.18)

Here T i,an contains quantities determined earlier. After substituting
{6.18) in (6.16), we obtain

L ; ¢ afo@il
o= — {2z ndp (0= 20 [ 25N xn)  619)
° 7 ; 9o
The quantity J, is different from zero; in particular, for starting
equations of the form 60X / ot 4 F =0 (6 20)

where F does not depend upon 3/3t {Equations (6.1) can usually be put
into such a form by introducing supplementary unknowns), J, differs from
J # 0 in (6.15) only by a numerical factor., The constant ¢, in (6.17)
remailns arbitrary; we can take (,=.0 1n so far as the choice of a value
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C,# 0 1s equivalent to a change of normalization of xy (see Apendix).

1t 1s interesting to clarify what quantities must first be calculated in
order to determine X, ,,,,. Let us construct Table 1 from the quantities
TABLE 1 X, vien 8nd @y, . It can be shown
that in Equation (6.13) there occur all
the elements of the table standing to

v+2n
\\\\\ 0 1 9 3 4 5 the left of the dlagonals drawn through
v | the element X, ,ignsp- Hence it follows
0 [Xw Xoo Xog that in order to find .@,, it is neces-
1 X11,00 Xi3,00 X504 sary first to £ind X, n.y, 1.e.
2 Xog Xoq necessary to calculate the (n+ 1)th
3 X3 Xas

harmonic of the periodic motion.

The frequencles gy, = Qg — [Tan
are complex. In so far as the frequency w 1in (6.5), (6.9) must be real,
then 1t 1s necessary that

0 =Q)+F Qg+ Q¢+ ... =Q (6.21)
Y=7t+ Teqtre* + ... =0 (6.22)

Here the coefflclents of the powers of ¢ are known fungtions of » and .

7. In order to determine the wave number and amplitude of the steady
periodic motion there 1s as yet only one Equation (6.22); the second follows
from from the following hypothesis [15]: in the system a motion will become
extablished of such amplitude that the maximum of the nonlinear incement v
as a function of the wave number k 1s zero (Fig.7); the value x for
which the maximal increment of vy 1s equal to zero 1s also the wave number
of the steady motion. This hypothesis 1s related to the fact that the value
of ¢ for which the maximal inc>ement is zero 1s uniquely qualitatively
singled out from other values ¢: g .

According to the hypothesis thus made, the quantities %, ¢ satlsfy
Equatilon ’ , ’
Oy/0k = v, +v,9 +vg* +... =0 (7.1)
This equation shows that the hypothesis made above 1s equivalent to the
following: 1in the system a motlon becomes established with that wave number

for which the quantity ¢ , determined by Equation (6.22) and considered as
a function of x , 1s maximal.

This solution of Equation (7.1) is sought in the form
k= ko + kig + keq® +... (7.2)

Substituting (7.2) in (7.1), carrylng out the expansion with respect to
¢ and equating to zero the coefflcients of the powers of ¢ , we obtaln

Y, = 0, vk 4+ v, =0,... (7.3)
Here the quantities y are taken when # = k, .

From (7.3) one determines one after the other the quantities x,. The
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first equation determines j = ko(x) and shows that when x = k, the linear
increment vy, 1s maximal (Fig.7). From the second equation one obtains

By= — y'a/y’; ; 1t is 1mmedlately obvious from Fig.7 that for slight super-
criticalness y”,# O . Similarly one finds also the other quantities

Bo= Ko (X) .

Substituting (7.2) in (6.21), (6.22) and collecting terms with the same
powers of ¢ , we obtain

o=Q + Qq+... (@1 = Qs + ki, . . ) (7.4)
T = Te-+ag+ b2+ ...=0, (= T2 b= T4+ 12'kr - Yoo ks (7.9)

Here the quantities vy,, are taken when ¥k = %k, ; the coefflcients of
powers of ¢ in (7.4), (7,5) are known functions of the parameters X .

The solutions of Equations (7.5) are found in Sections 1 to 5.

We notice that in systems of the second type the case of aperiodic in-
creasing perturbations (here [2] the function Q, (k) = 0) is not in any way
singled out from the point of view of applicability of the calculation; we
can, however, show (see Appendix), that in this case the steady periodic
solution of small amplitude does not depend on time,.

8, Let us consider'systems of the first type (the equilibrium state
depends upon all the Cartesian coordinates, whilst perturbations and the
steady motion are not periodic with respect to any of the Cartesian coordi-
nates).

Suppose that the increasing perturbation has an oscillatory character [11);
then the calculations of Section 6 are not altered if only the quantities
r, p are regarded as vectors (and integration with respect to p is carried
out throughout the whole volume V¥ , occupied by the flowing fluid), and
moreover in the given case ¢ = wt .

Expressions (6.5) and (6.9) show that () occurs in the steady solution
in the form of the combination Qei¢! = Q).

The amplitude @(¢) evidently satisfies Equation
dQ/dt = i@ (8.1)

which retains sense even when y # O ; 1in particular, (8.1) passes over
into the equation of linear theory 1f we neglect in w all powers of g .
If in (8.1) we set Q = | Q|e'® and separate the real and imaginary parts,
then we obtain (1.1) and Equation df/dt = Q.

In the case of systems of the first type the observed steady periodic
motion always correspond to the stable solutions of Equation (1.1) (in which
y is taken in the form (6.22)).

In the case of systems of the second type steady motion becomes established
as a result of the interaction of a continuous spectrum of increasing waves,
In the study of stability of steady solutions of Equatdon (1.1) for the
divergence &¢ from the steady value of g we obtain

dSq/dt = 8q (y + qdy/dq + q (dy/dk)dk/dq) (8.2)
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Here vy = y(k, ¢) is defined in (6.,22), and % = x(¢) 1in (7.1), (7.2).

By virtue of (6.22) and (7.1), there remains in (8.2) only the second term,
in which % 1s equal to the wave number of the steady solution (7.2); hence
1t follows that the stability of the steady solution with the wave number
(7.2) 1s studied only with respect to the perturbation &g with the same
wave number. Accordingly, study of the stability on the basis of Equatilon
(1.1) is not in the glven case complete (in contrast to the case of systems
of the frirst type), and the observed steady motions correspond to the stable
steady solutions of (1.1) only when the former really are periodic

Now let us consider systems of the first type which for slfght supercriti-
calness are unstable with respect to aperlodic perturbation. It is to be
expected that the steady solution in this case does not depend on time and
1s determined completely (1t does not contain an arbitrary phase). It can
be assumed that yx =4 = 0 for problems (6.1), (6.2) (this can always be
achleved by the introduction of a new unknown JYx= Y — X) . We seek the
solution in the form

X=0QX,+ QX+ ....0/dt=y=7,+ Qr1+ @y ... (83

Here ¢ 1s the real amplitude; 1t 1s convenlent to take ¢ > O .

Substituting (8.3) in (6.1), (6.2) and equating to zero the coefficlents
of powers of ¢ , we obtain the problems for the determination of 1y, _, and
Xu

When n = 1 we obtain the linear problem of the theory of stability
L°X,=0, UX;=0 (L=L(x,V,r, 1) (8.4)

Here and in what follows the superscript © indicates. that the correspond-
ing qusntity is taken when y =y, . For y, and X, in (8.3) one should
take the elgenvalue (assumed simple) and the elgenfunction of the problem
(8.%) which characterize the increasing perturbation; according to the con-
ditlion y,> O and therefore X, can be assumed real, When n > 1 we have
the problem

L°X, + qna OL/ 0y X, + T, =0, UX, =0 (8.9)

Here 17,, depends on quantities determined earlier. Let G(y) be the
Green's function for the problem (8.4); 1t is obtained from (6.15) by
replacing X,; by X, and ¢w by vy . From (8.4) and (6.15) 1t follows
that the solutlon of the problem (8.5) exists under the condition

1 oL
\4 v
and has the form 8.7)
Xn = - &GJ’ (rv P) lF'n (p) dp + Cn_lev ‘Pn = Tn_l" Ta-1 (%%)O Xl

Here 2 1s the real eigenfunction of the adjoint problem (8.8), corre-
spond*ng to the value y,> O . The constants (, are arbitrary; we can set
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¢, =0 (and the normalization of the function X, 1is unchanged) ,

To the observed motlons correspond the stable steady solutions (?:> 0 of
Equation JQ /dt = Y(Q, where y 1is determined from (8.4). It can be
shown (see Appendix) that y 1s real for sufficlently small values of Q-

It is to be noted that the nonlinear increment y can be calculated b
a method differing from those descrlbed in Sections 6 and 8 (see Append1x§

All that was sald above concerning abrupt transition is applicable to
systems with a finite number of degrees of frecedom {described by the ordinary
differential equations (6.1)). In this case Eq%?tions (6.10) are algebraic,
and the problem of finding the quantitles ®gns Ay vion simplifies so much as
to make possible the consideration of actual examples [18] (wilthout the
application of computers).

Appendix, We shall show that the homogeneous problem (6.,13) with  # 1
does not have nontrivial solutions. It 1s sufficient to prove the assertion
for A = 0 ; then it remains true alsoc for sufficiently small p , in so
far as ¢ - O when A - O (here ) 1s a vector). According to the defini-
tion of the critical parameters XAy , the linear increment y.= yo(k, A«)
vanishes when x% = Js(Ay) = %x and 1s negative when ¥k # ¥k« iFig.7). More-
over, the frequency wy= w,(%, Ax) 18 real when Jk = k4 (and equal to wx)
and complex when % # ky . Accordingly, problem (6,13) with the operator
Ly= L,°(My) has a real elgenvalue wy= w, only when % = ky ; when k= vis
(v # 1) the eilgenvalues w, are complex, and consequently the real value
W= vy 1s not an elgenvalue.

We shall show that the choice of the constants ¢, #0 in (6.17), (8.9)
is equivalent to a change of normalization of X,; and X, . Let ¢ be the
amplitude of the steady solution corresponding to the choice Co =1,
¢, =C; = ... = 0 . Let us introduce the "new" amplitude ¢* by Equation

Q=C(Q/C)=C(Q") (A.1)
If we take C 1in the form

C=0C"+C"¢" +C g " P4 ..., ¢" =Q"Q™

substitute (A.1) in the solution of (6.5) and (6.9) and collect terms with
identical powers of ", then we obtain expressions depending on the con-
stants (¢, ., ... ; they can be selected so as to obtaln the solutlon
of (6.9) with arbitrary values of the constants C,, ¢,, ... . A simllar
transformation of the solutlon of (6.9) is obtained if instead of (A.1) we
take X, = C(Xy;/C)= CXy" 1in Expressions of X, .., in terms of Xy,

We shall show that if in (6.9) the quantity &, =0, then also®,, =0, 1.e,
the steady perilodic solution does not depend on time, Let us seek the solu-
tion X 1n the form of a real Fourier series with respect to the spatial
coordinates, in which the nth harmonic 1s proportional to exp nyt . The
coefficients of the series and the increment y will be sought in the form
of an expansion of type (6.9) with respect to the real amplitude ¢ . More-
over, to determine vy,, and the quantities of type A@,v+m1 we obtain real
equations (in so far as the starting problem (6.1), (6.2) is real). Accord-
ing to the condition, o 18 real, and therefore the functions of type X,
can be taken real; G(Y¥ is also real for real vy , and therefore vy., and
the quantities of type v,vien are obtained real, In the case of the prob-
lem (8.3) to (8.7) the quantities vy, are also real.

The steady solutions can be found by the method of [17], in which the
dependence on time 1s completely included in the amplitude 5 iIn the case
of periodic solutions for ¢ we postulate Equations (8.1), ?6.9), and seek
a solution for X in the form

X=X, (X, l~1Q™ (A.2)
=0

It is appropriate to take X =y and
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X = QX5 4+ (QXy)* (A.3)

Then for the real quantities Y, we obtain
n

A=) Q" (QM° Xy gy, X, = X0 (A.4)

v=0

For simplicity we shall assume that the starting equations have the form
(6.?5);) then on substituting (A.4), (A.2) in (6.20) we obtain with the help
of .1

d(Q'q™) /dt = Q4" (ive + 2n7) ©= Q —~ ir) (A.5)

Here vy, w are, respectively, the nonlinear increment and frequency. If
in the expansions t6.2o , (6.2) with respect to powers of ¢ we equate to
zero the cqoefficients of qu", then we obtain the problem for the determi-
nation of X, ,ian- When y = 1, n = 0 we have the problem of the theory of
stability (b6.12). When v + 27 > 1 we obtain the problem {6.13), in which
LP=1L, {ivcoo%— 2nYy); 1f y,# 0 , then for any y the solution has the form
(b6.14), It 1s not difficult to see that X j49n > as A - O , since the
denomlnator of the first term in Expression (6.15) for ¢ 1is proportional
to 2y, . For boundedness [17] of the quantities X, jian when A =0 it
1s necessary that the condition (6.16) be fulfilled, from which we find w,,
from (6.19). Moreover for &y jisn we obtain Expression (6.17), in which

C,= 0. ’

In the case of aperiodic steady motion 1t is approprilate to postulate for
? that dQ/dt=17Q; where vy, r are chosen in accordance with {8.3) and
8.4). 1In this case

dQ"/dt=Q " (1+ (n—17) (A.6)

Then problem (6.20), (6.2) 1s solved just as in the case of periodic
steady motion,

We note that for solution of the problem (6.20). (6.2) by the method
described in Sections 6 and 8, we take into account only the first terms in
the left-hand sides of (A.5) and (A.62. In both methods, however, the ex-
pressions for the derivatives (A.5), (A.6) have one and the same physical
meaning when y = 0 ; hence 1t follows that the solutions obtalned by the
two methods are physically identical and differ only in the normalization
of the functions X, and 1, .

The author is grateful to A.A. Vedenov, M.A, Leontovich and M,A. Naimark
for discussion of various questions touched upon in this paper.
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